Single Plasmonic Nanoparticles as Biosensors

Plasmonic nanostructures for applications in the life sciences

Jan Becker, Carsten Sönnichsen

Sensing properties of plasmonic particles

> Darkfield-microscopy (fastSPS)

Protein-membrane interaction

Improvement of Sensors

Optical Properties Depend on:

Darkfield Microscopy

Concept of single particle plasmon sensors

Single Plasmonic Nanoparticles as Biosensors

Sensing properties of plasmonic particles

> Darkfield-microscopy (fastSPS)

Protein-membrane interaction

Improvement of Sensors

Conventional Method to Measure Single-Particle Spectra

200

400

450

500 550

Wavelength [nm]

600 650 700 750

The Scanning Method

The fastSPS Method

Single Plasmonic Nanoparticles as Biosensors

Sensing properties of plasmonic particles

> Darkfield-microscopy (fastSPS)

Protein-membrane interaction

Improvement of Sensors

Au rods as Biosensor for Protein Binding

FastSPS gives statistics with only one experiment

Nano Lett. (2008), 8, 1724

Sensitive detection of small spacer length

Shift due to streptavidin binding:

Single Plasmonic Nanoparticles as Biosensors

Sensing properties of plasmonic particles

>Darkfield-microscopy (fastSPS)

Protein-membrane interaction

Improvement of Sensors
Reduction of Single Particle Linewidth

Increasing Plasmon Sensitivity

Sensor Improvement

Ag Coating Reduces Single Particle Linewidth

Particle Characterization

Sensor Improvement

Increased plasmon sensitivity results in larger wavelength shifts

Gold Nanorattles Show Improved Sensitivity

[3] Raschke et al. Nano Lett. (2004), 4, 1853

Conclusions

- fastSPS allows continuous observation of many (up to 30) nano-particles in parallel
- Membrane and protein binding can be detected by shift in resonance wavelength of single nanorods
- Simple functionalizability of membranes (many different headgroups available)
 - ➔ ideal characterization tool for biomolecules
- Ag coating of Au rods reduces the single particle linewidth (at same resonance wavelength)
- Gold Nanorattles show improved sensitivity on changes in refractive index

Acknowledgement

nanobiotechnology

Carsten Sönnichsen

I. Ament

S. Pierrat

L. Carbone

O. Schubert

A. Jakab

I. Zins

Collaborators Andreas Janshoff, Cristina Baciu

More information: www.nano-bio-tech.de

Y. Khalavka

