

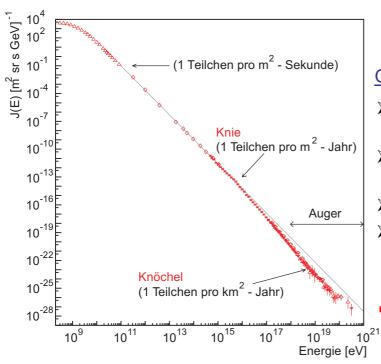
Untersuchung der optischen Eigenschaften der Fluoreszenzteleskope des Pierre Auger Observatoriums

- Jan Becker
- Johannes Blümer
- Hans Klages
- Bianca Keilhauer
- Tilo Waldenmaier

Jan Becker Mainz, 7.10.05

Die Kosmische Strahlung

- Geladene Teilchen, die sich durchs Weltall bewegen
- 1912 von Victor Hess entdeckt
- Besteht aus 98% Atomkernen, 2% e[±]

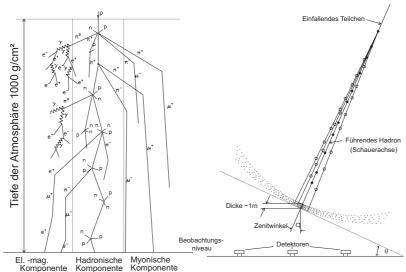


- 87% Protonen
- 12 % α-Teilchen
- ~ 1% schwerere Elemente
- Neutrinos und Photonen z\u00e4hlen nicht zum klassischen Begriff der Kosmischen Strahlung
- Gesamte Fluss liegt bei ~1000 Teilchen/ Sekunde und cm²

Das Energiespektrum

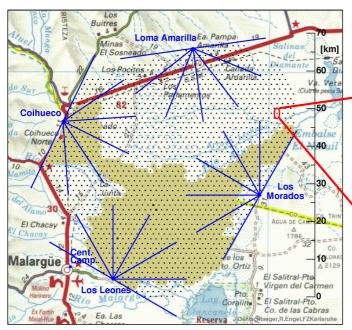
Offene Fragen:

- Quellen und Beschleunigungsmechanismus der Teilchen
- Ursprünge der Knicke im Spektrum (Knie und Knöchel)
- > Fluss bei höchsten Energien
- Ankunftsrichtung: einzelne Punktquellen oder isotrope Verteilung
- → <u>Pierre Auger Observatorium</u>

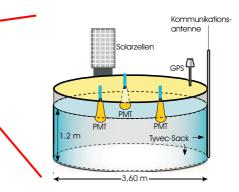

Jan Becker Mainz, 7.10.05 3

Ausgedehnte Luftschauer

... werden durch die Kosmische Strahlung in der Erdatmosphäre erzeugt



- aus stichprobenartiger Messung der (e[±], μ[±])-Anzahl lässt sich auf Art und Energie des Primärteilchens schließen
- → e[±] regen in Atmosphäre N₂-Moleküle an → Emission von Fluoreszenzlicht

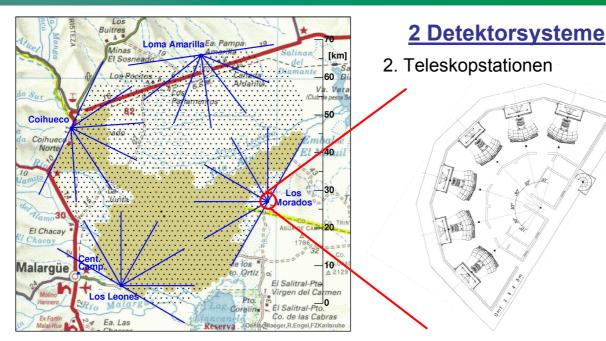

Das Pierre Auger Observatorium

2 Detektorsysteme

1. Oberflächendetektoren

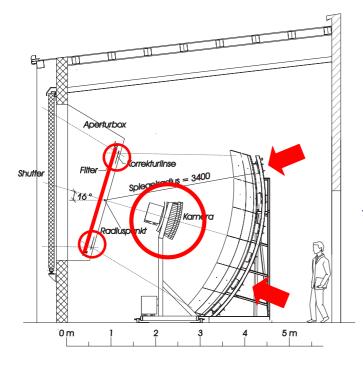
- 1600 Wasser-Cherenkov-Detektoren
- 1.5 km Abstand untereinander
- messen die Sekundärteilchen

in Argentinien am Fuße der Anden Fläche von 3000 km²


Größe des Saarlandes

Jan Becker Mainz, 7.10.05 5

Das Pierre Auger Observatorium



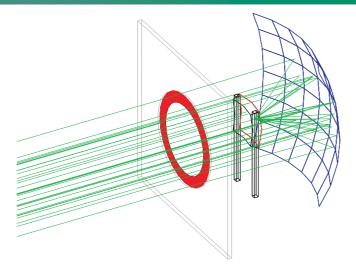
- 4 Teleskopstationen
- 6 Teleskope pro Station

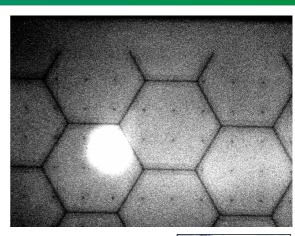
Einzelnes Teleskop

Aufbau des Teleskops:

- segmentierter sphärischer Spiegel
- → Photomultiplier-Kamera
- Korrekturlinse
- UV-Filter mit Durchlassbereich 300-400nm

Eigenschaften des Teleskops:


- Gesichtsfeld von 30° x 30°
- Aufgrund der geringen Fluoreszenzrate nur Messungen in klaren mondlosen Nächten möglich
 - → Duty-Cycle von 10-15%


Jan Becker Mainz, 7.10.05 7

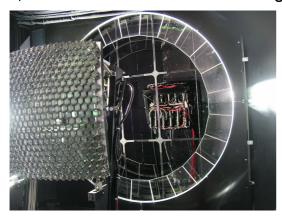
Spotgröße

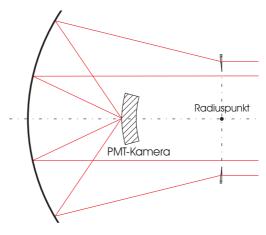
Maximal erlaubte Spotgröße: 0.5° ≡ 7.42mm Spotradius

→ Aperturradius maximal 850mm

Information über optische Eigenschaften:

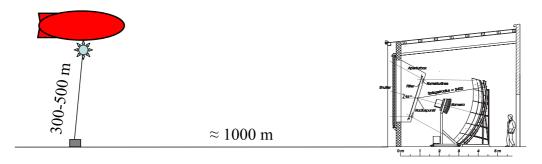
→ Untersuchung der Spotstruktur

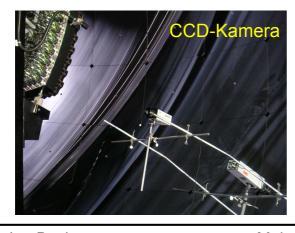


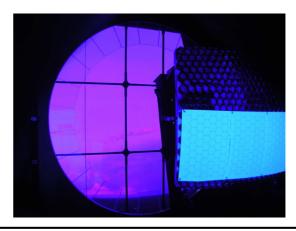

Der Korrekturring

Erhöhung der Empfindlichkeit des Teleskops gewünscht:

- → Vergrößerung des Aperturradiuses auf 1100mm notwendig
- → Spotgröße würde sich allerdings auf 1.5° vergrößern
- → Installation eines Korrekturrings


- → Strahlen durch den Ring werden nach außen gebrochen
- → Treffen den Spiegel weiter außen → Stärkere sphärische Abberation
- → Spotgröße bleibt bei 0.5°


Jan Becker Mainz, 7.10.05 9



Erzeugung eines Spots

Die Lichtquelle

Testaufnahme mit Wega

- → 10sec Belichtungszeit notwendig
- → Benötigte Photonenzahl ausgerechnet

Anforderungen:

- kurze Pulsdauer wg. Ballonbewegungen
- geringes Gewicht um Nutzlast zu minimieren

Eigenschaften der Lichtquelle:

- 6 High-Power-LED-Arrays mit Maximum bei 395nm
- Niedriges Gewicht (80 Gramm)
- 250mW ausgestrahlte Leistung
- Gepulster Modus mit Pulslängen 1/10 sec - mehrere Sekunden
 - → Energiesparend
 - → kein Kühlsystem erforderlich

Jan Becker Mainz, 7.10.05 11

Der Fesselballon

Eigenschaften:

Nutzlast: 3 – 4 kg

• Größe: 7.5m3

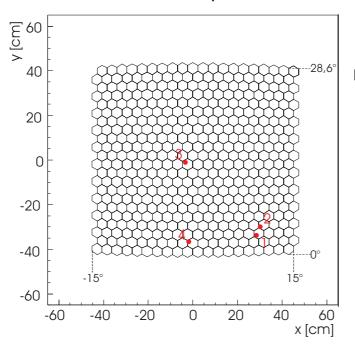
• Länge: 4.5m

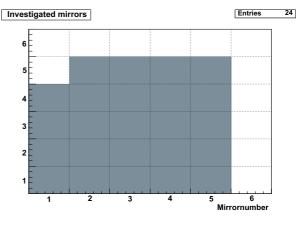
• Höhe: 2.2m

• Maximale Höhe: 1500m

 Position über GPS bekannt (für Auswertung notwendig)

Wenn Lichtquelle nah am Teleskop:


- Lichtstrahlen weniger parallel
 - → Spot vergrößert sich
- Ballonbewegungen im Wind haben größere Auswirkungen
 - → Spot hat größere Verschmierung
- → Mindestabstand zum Teleskop: ~1000m


Messungen

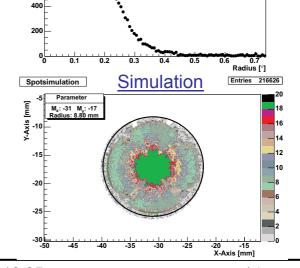
4 verschiedene Ballonpositionen

Je nach Ballonposition werden unterschiedliche Spiegel beleuchtet → 24 von 36 Spiegeln untersucht

Jan Becker Mainz, 7.10.05 13

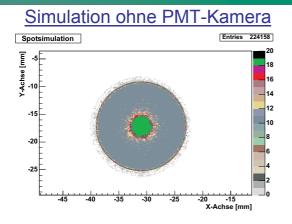
F

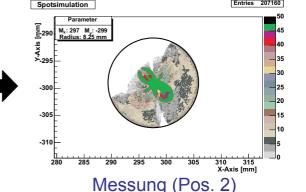
Untersuchung der Spotgröße



Messung (Pos. 3) Spot 1.05.56.b16 Entries 307200 Parameter M.: 227 M.: 178 Radius: 41 = 9.3 mm 350 260 180 180 180 100 100 150 200 250 300 350 X-Axis [Pixel]

> Bedingung: 95% der Photonen im Kreis


- → Bestimmung der Intensitätsverteilung
- → Spotradius R_R= 9.3mm
- mit zugehörigen GPS-Koordindaten simulation eines idealen Spots möglich
 - \rightarrow Spotradius R_S = 8.8mm
- → R_R nur 0.5mm $\hat{=}$ 5.3% größer als R_S
- → Hohe Qualität des Teleskopaufbaus

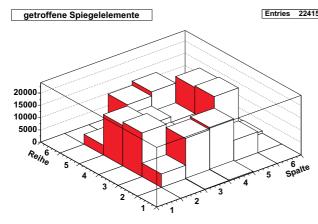


Schatten der Photomultiplier-Kamera (1)

Simulation mit PMT-Kamera (Pos. 2)

- Ohne PMT-Kameraschatten hat Spot eine Kreisform
- Abhängig von Einfallswinkel der Lichtes entstehen Abweichungen zur Kreisform
- Untersuchung der Aufnahmen nach Abweichungen von der Kreisform
- → Abweichungen deutlich zu erkennen

Jan Becker Mainz, 7.10.05


Schatten der Photomultiplier-Kamera (2)

15

Getroffene Spiegel (Pos. 3)

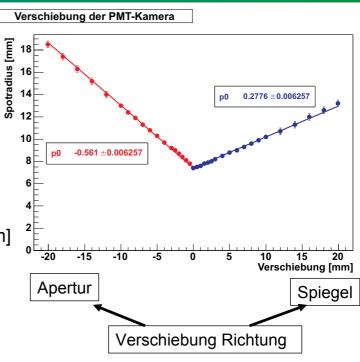
Simulation (Pos. 3) ohne PMT-Kamera

- mittlere Spiegel werden aufgrund der Photomultiplier-Kamera weniger getroffen
- → Simulation ergibt, dass 25 30% des einfallenden Lichtes durch die Photomultiplier-Kamera absorbiert wird, abhängig vom Einfallswinkel

Einfluss des Korrekturrings

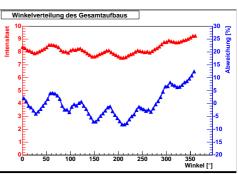
Photonen durch innere Apertur

- Photonen durch den Korrekturring erzeugen komplizierte Formen
- ➤ Formen sind abhängig vom Einfallswinkel (wegen Koma-Aberration in Linse)


Jan Becker Mainz, 7.10.05

Verschobene Photomultiplier-Kamera

- In Simulationssoftware lässt sich die Position der PMT-Kamera verschieben
- ➤ Im Idealfall beträgt der Spotradius = 7.42mm
- Verschiebung der PMT-Kamera aus idealer Position führt zur Vergrößerung des Radius um:
 0.56 • d bzw. 0.28 • d
 - d: Abstand aus Idealposition /[mm]
- Realer Spotradius R_R ist 0.5mm größer als simulierter Spot R_S
- → Platzierung der Photomultiplier-Kamera weicht maximal ~ 2mm von der Idealposition ab



F

Ausblick

- Aufgrund des ungewöhnlich schlechten Wetters nur ein Teleskop untersucht
 - → Untersuchung weiterer Teleskope
- Auflösung der Spotposition auf der PMT-Kamera
 - > Position der Lichtquelle über GPS bekannt
 - → Überprüfung der Orientierung der Teleskope (sog. Pointing)
- Mit Simulationssoftware ist Intensitätsverteilung im Spot für jeden Einfallswinkel ermittelbar
 - > Einbinden in die Rekonstruktionssoftware
 - → Verbesserung der Luftschauerrekonstruktion
- Isotropie der Lichtquelle (z.Z. bis ~12% Abweichung vom MW) auf < 1.5% verbessern
 </p>
 - Stabilisierung der Leuchtleistung (sehr temperaturabhängig)
 - → Kalibration der Photomultiplier

Jan Becker

Mainz, 7.10.05