Plasmonen als Sensoren (Plasmons as Sensors)

Jan Becker

Promotionsvortrag – Mainz, 20.05.2010

Plasmonen Eigenschaften

Optische Eigenschaften

Umgebung: n = 1.33

VERGLEICH DER STREUEFFIZIENZEN VON GOLD ZU SIO₂

Kugeln

Stäbchen

Dunkelfeldmikroskopie

Dunkelfeld-Kondensor

Bisherige Strategie

Auswahl eines Partikels

Zerlegung des Lichts

Aufnahme des Spektrums

Nachteile:

- Manuelle Auswahl
- Zeitaufwendig
- Keine Statistik

Untersuchung mehrerer Partikel

Eingangsspalt

Idee: flexibler Eingangsspalt

Wenige Partikel

Optimale Partikelzahl

"Verschiebbarer" Eingangsspalt

Funktionsweise eines einzelnen Pixels:

Licht wird durchgelassen

Licht wird blockiert

7

Die fastSPS Methode

Performance des Setups

Schnelle & Automatische Untersuchung

Gute Charakterisierung der Probe möglich

Statistik verfügbar

Kontinuierliche Überwachung mehrerer Partikel

Anwendung

Membranen und Proteine

Plasmonen als Biosensoren

Nano Lett. (2008), 8, 1724

EXPERIMENT: MEMBRAN – PROTEIN BINDUNGEN

Glas Substrat

Statistik ist wichtig

Unterscheidung von Kopfgruppen

Verschiedene Kopfgruppen können unterschieden werden

Verbesserung der Sensitivität

Bisher Auswahl des verwendeten Aspektverhältnisses (nahezu) willkürlich

Optimales Stäbchen

Stäbchen mit Aspektverhältnis zw. 3 und 4 haben beste Sensitivität

Möglichkeiten der Verbesserung

Au Nanorasseln

Nanorasseln haben leider kleinere Sensitivität als Gold-Stäbchen 18

Verringerung der Linienbreite

MODIFIZIERUNG: SILBERBESCHICHTUNG

Silberbeschichtung verringert Linienbreite des Spektrums

Sensitivität von Au@Ag Stäbchen

→ Silberbeschichtung verbessert die Sensitivität

Zusammenfassung

Aufbau eines neuen Dunkelfeld-Spektroskopie Mikroskops (fastSPS)

- Schnelle & automatische Untersuchung vieler Partikel
- Kontinuierliche Überwachung mehrerer Partikel

Protein Nachweis mit Membran beschichteten Goldpartikeln

- Unterscheidung von verschiedenen Kopfgruppen
- Unterdrückung von nicht-spezifischen Bindungsereignissen

Verbesserung der Sensitivität

- Stäbchen mit AR zw. 3 und 4 haben höchste Sensitivität.
- Gold-Nano-Rasseln trotz größeren Shifts ungeeignet
- Silberbeschichtung der Gold Stäbchen erhöht die Sensitivität

Danksagung

Carsten Sönnichsen

A. Henkel

I. Ament

S. Pierrat

C. Rosman

P. Boertz

L. Carbone

R. Sharma

A. Jakab

Kollaborationen:

- C. Baciu, Prof. A. Janshoff (Uni Mainz)
- A. Trügler, Prof. U. Hohenester (Uni Graz)

